Approximation property and nuclearity on mixed-norm Lp, modulation and Wiener amalgam spaces

نویسندگان

  • J. Delgado
  • M. Ruzhansky
  • B. Wang
چکیده

In this paper, we first prove the metric approximation property for weighted mixed-norm L (p1,...,pn) w spaces. Using Gabor frame representation, this implies that the same property holds in weighted modulation and Wiener amalgam spaces. As a consequence, Grothendieck’s theory becomes applicable, and we give criteria for nuclearity and r-nuclearity for operators acting on these spaces as well as derive the corresponding trace formulae. Finally, we apply the notion of nuclearity to functions of the harmonic oscillator on modulation spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wiener amalgams and summability of Fourier series∗

Some recent results on a general summability method, on the so-called θ-summability is summarized. New spaces, such as Wiener amalgams, Feichtinger’s algebra and modulation spaces are investigated in summability theory. Sufficient and necessary conditions are given for the norm and a.e. convergence of the θ-means.

متن کامل

Changes of Variables in Modulation and Wiener Amalgam Spaces

In this paper various properties of global and local changes of variables as well as properties of canonical transforms are investigated on modulation and Wiener amalgam spaces. We establish several relations among localisations of modulation and Wiener amalgam spaces and, as a consequence, we obtain several versions of local and global Beurling–Helson type theorems. We also establish a number ...

متن کامل

Remarks on Fourier Multipliers and Applications to the Wave Equation

Exploiting continuity properties of Fourier multipliers on modulation spaces and Wiener amalgam spaces, we study the Cauchy problem for the NLW equation. Local wellposedness for rough data in modulation spaces and Wiener amalgam spaces is shown. The results formulated in the framework of modulation spaces refine those in [3]. The same arguments may apply to obtain local wellposedness for the NL...

متن کامل

Convolution and Wiener Amalgam Spaces on the Affine Group

Wiener amalgam spaces are a class of spaces of functions or distributions defined by a norm which amalgamates a local criterion for membership in the space with a global criterion. Versions of such amalgam spaces have arisen independently many times in the literature, and often provide a natural and compelling context for formulating results. As one illustration of the shortcomings of the usual...

متن کامل

Sharpness of Some Properties of Wiener Amalgam and Modulation Spaces

We prove sharp estimates for the dilation operator f(x) 7−→ f(λx), when acting on Wiener amalgam spaces W (L, L). Scaling arguments are also used to prove the sharpness of the known convolution and pointwise relations for modulation spaces M, as well as the optimality of an estimate for the Schrödinger propagator on modulation spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2016